TUNKU ABDUL RAHMAN UNIVERSITY OF MANAGEMENT AND TECHNOLOGY FACULTY OF ENGINEERING AND TECHNOLOGY

ACADEMIC YEAR 2022/2023

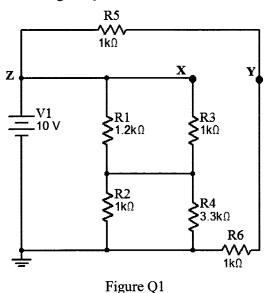
JANUARY EXAMINATION

AGEL1523 PRINCIPLES OF ELECTRICAL AND ELECTRONIC ENGINEERING

MONDAY, 9 JANUARY 2023

TIME: 2.00 PM - 4.00 PM (2 HOURS)

DIPLOMA OF ELECTRONIC ENGINEERING

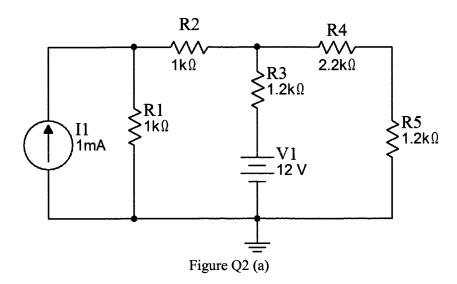

Instructions to Candidates:

Answer <u>ALL</u> questions.
All questions carry equal marks.

Question 1

- a) Explain how a Wheatstone bridge can be used to determine the value of an unknown resistance.

 Draw and label the Wheatstone bridge used in the explanation. (8 marks)
- b) An ammeter with an internal resistance of 50 Ω is used to measure the current of a 500 Ω load that is connected in series to a 10V supply. Calculate the theoretical value of the load current and the actual ammeter reading. (4 marks)
- c) Based on the resistive circuit in Figure Q1:


- i) Calculate the current through resistor R_6 using the current divider rule. (4 marks)
- ii) Use an alternative method to determine the current of resistor R₆. (3 marks)
- Explain the effect of connecting a wire between point X and point Y. Next, calculate the total resistance of the modified circuit.

 (6 marks)

 [Total: 25 marks]

Question 2

- a) The Superposition Theorem allows a circuit with multiple sources to be analyzed by evaluating only one independent source at a time. Identify any TWO (2) prerequisites for the theorem application. (4 marks)
- b) Convert the circuit of Figure Q2 (a) into a parallel circuit using source conversion. Next, determine the voltage across resistor R₅. (10 marks)

c) Consider the circuit in Figure Q2 (b). Determine the voltage across resistor R_2 using Superposition Theorem. (11 marks)

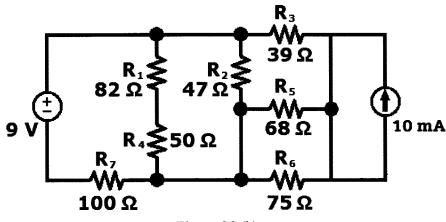
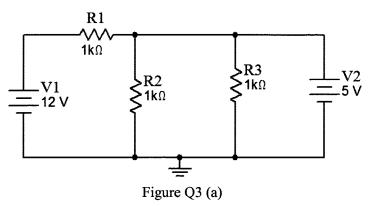
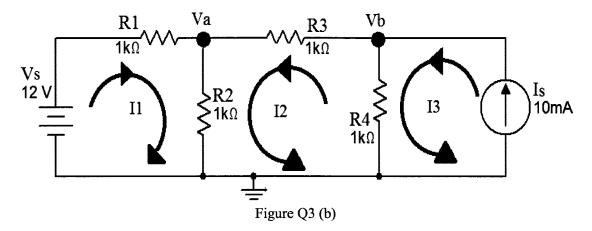
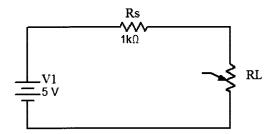



Figure Q2 (b)


[Total: 25 marks]

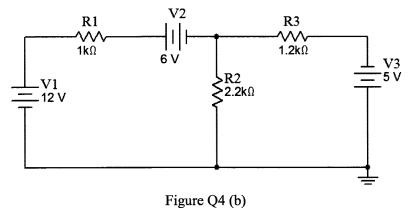
Question 3

a) Define *node* in the context of an electric circuit and identify all the nodes in the circuit of Figure Q3 (a). (4 marks)


b) Figure Q3 (b) shows a multi-loop resistive circuit.

- i) Calculate mesh currents I_1 , I_2 and I_3 using mesh analysis. Next, determine the voltage across resistor R_3 . (11 marks)
- ii) Calculate node voltages V_a and V_b using nodal analysis. Next, determine the voltage across resistor R₃. (10 marks) [Total: 25 marks]

Question 4


a) Define the *Maximum Power Transfer Theorem*. Give a numerical example using the circuit shown in Figure Q4 (a) to support the definition. (6 marks)

Note: RL is a variable resistor

Figure Q4 (a)

b) Consider the circuit that is shown in Figure Q4 (b). Determine the voltage across resistor R₃ using:

i) Thevenin's Theorem.

(9 marks)

ii) Norton's Theorem.

(10 marks)

[Total: 25 marks]